
MPD Collaboration Version 1.1

November 24, 2022

MpdTpcKalmanTrack tutorial for dummies
and intermediate users

or
Some things you always wanted to know about
MpdTpcKalmanTrack but were afraid to ask

A. Zinchenko∗

VBLHEP JINR, Dubna, Russia

1 Introduction

Currently, the MpdTpcKalmanTrack object represents a track reconstructed in the MPD TPC
using the Kalman filter - based track reconstruction procedure MpdTpcKalmanFilter.

Some information on the object is presented in Sect. 2, while Sect. 3 gives some examples
of how one can work it.

2 Main track parameters

As often accepted, the reconstructed track can be parameterized as a vector of 5 parame-
ters at some position along the trajectory. Outside of the TPC active volume, i.e. outside
of the innner and outer borders of the TPC readout chambers, it corresponds to the vector
(rφp, z, φm, α, sign(q)/pT ) at a radius r, where φp is the azimuthal angular position of the given
point on the track (rφp is a circle arc length), z is the longitudinal coordinate, φm is the track
momentum direction in the transverse plane at the point, α is the track momentum direction
with respect to the transverse plane (α = π/2 − θ with θ being the polar angle), sign(q)/pT
is the signed inverse transverse momentum of the track. Inside the TPC active volume, some
track parameters in the Kalman filter procedure are changed to the local ones, namely, the
transverse coordinate rφp becomes the coordinate x along the padrow direction in the readout
sector and the radius r becomes the coordinate y across the padrow direction.

Track parameters are computed at the point of the closest approach to the OZ-axis (or to
the nominal beam line location), although some parameters are invariant with respect to the
exact point choice. There are several functions to access track parameters of the object track:

∗Alexander.Zinchenko@jinr.ru

1



int nHits = track.GetNofTrHits(); // number of hits attached to the track
Double_t chi2 = track.GetChi2() / (nHits * 2 - 5); // χ2/NDF
Double_t r = track.GetPosNew(); // DCA (distance of the closest approach to OZ-

axis)
TVector3 mom3 = track.Momentum3(); // momentum vector at PCA
etc.

To distinguish between primary and secondary tracks it is possible to use the function
GetChi2Vertex() which returns the χ2-value of the track with respect to the primary vertex
(with NDF = 2), computed in the primary vertex reconstruction package. It should be noted
here that track reconstruction package assumes the pion mass hypothesis, resulting in somewhat
higher χ2-values (from the track fitting and with respect to the primary vertex) for heavier
particles (protons, for example).

One can also access the dE/dx - value, computed for the track:

Double_t dedx = track.GetDedx(Double_t coef = 6.036e-3); // dE/dx converted
from ADC counts to keV/cm using the conversion factor coef

3 Working with MpdTpcKalmanTrack

To illustrate how to work with MpdTpcKalmanTrack objects, this Section gives some examples.
In the first one, it is demonstrated how to obtain track parameters at the point of the closest
approach to the reconstructed primary vertex and the DCA at this point, which could be used
to make another way of separating primary from secondary tracks than explained above. The
computation can be done using the MpdHelix functionality as shown below:

//__________________________________________________________________________

MpdHelix MakeHelix(const MpdKalmanTrack *tr)

{

Double_t r = tr->GetPosNew();

Double_t phi = tr->GetParam(0) / r;

Double_t x = r * TMath::Cos(phi);

Double_t y = r * TMath::Sin(phi);

Double_t dip = tr->GetParam(3);

Double_t cur = 0.3 * 0.01 * 5.0 / 10; // magnetic field of 5 kG

cur *= TMath::Abs (tr->GetParam(4));

TVector3 o(x, y, tr->GetParam(1));

Int_t h = (Int_t) TMath::Sign(1.1,tr->GetParam(4));

MpdHelix helix(cur, dip, tr->GetParam(2)-TMath::PiOver2()*h, o, h);

return helix;

}

//__________________________________________________________________________

...

TVector3 primVert; // vertex position

MpdTpcKalmanTrack *tr; // pointer to reconstructed track

2



MpdHelix helix = MakeHelix(tr);

TVector3 pca;

Double_t s = helix.pathLength(primVert);

pca = helix.at(s);

pca -= primVert;

Double_t dca = pca.Mag();

...

The second example shows how to refit track (pointer) with certain mass and charge

hypotheses. To do this, it is necessary to instantiate and initialize the main TPC tracking
engine MptTpcKalmanFilter. A “minimalistic” version is shown below (i.e. the one with the
default value of the magnetic field of 5 kG):

FairRunAna ana;

MpdKalmanFilter::Instance("KF")->Init();

MpdTpcKalmanFilter *recoTpc = new MpdTpcKalmanFilter("TPC Kalman filter");

recoTpc->SetSectorGeo(MpdTpcSectorGeo::Instance());

recoTpc->FillGeoScheme();

...

MpdTpcKalmanTrack trCor = *track; // make a copy of the original track

int ok = recoTpc->Refit(&trCor, mass, TMath::Abs(charge));

MpdTpcKalmanTrack *tr = &trCor;

if (!ok) tr = track; // failed to refit - take original track

...

The third example shows how to perform a vertex-constrained fit of a track (pointer):

TChain *dst = ...; // input chain

TClonesArray* vtxs = nullptr;

dst->SetBranchAddress("Vertex",&vtxs);

...

MpdVertex *mpdVert = (MpdVertex*) vtxs->First(); // reconstructed vertex

...

MpdKfPrimaryVertexFinder vertFind; // create vertex finder

TClonesArray *smoothTracks = new TClonesArray("MpdTpcKalmanTrack",9); // track

container

smoothTracks->Delete();

new ((*smoothTracks)[0]) MpdTpcKalmanTrack(*track);

mpdVert->GetIndices()->Set(1);

(*mpdVert->GetIndices())[0] = 0;

vertFind.SetVertices(vtxs);

vertFind.SetTracks(smoothTracks);

vertFind.SetSmoothSame(1);

vertFind.Smooth();

MpdTpcKalmanTrack *tr1 = (MpdTpcKalmanTrack*) smoothTracks->UncheckedAt(0);

TVector3 mom3 = tr1->Momentum3(); // vertex-constrained momentum

3



4 Outlook

This tutorial will be being updated from time to time.

4


